A solution method for integro-differential equations of conformable fractional derivative
نویسندگان
چکیده
منابع مشابه
A Meshless Method for Numerical Solution of Fractional Differential Equations
In this paper, a technique generally known as meshless numerical scheme for solving fractional dierential equations isconsidered. We approximate the exact solution by use of Radial Basis Function(RBF) collocation method. This techniqueplays an important role to reduce a fractional dierential equation to a system of equations. The numerical results demonstrate the accuracy and ability of this me...
متن کاملSolution of Fractional Integro-differential Equations by Adomian Decomposition Method
Fractional integro-differential equations arise in the mathematical modelling of various physical phenomena like heat conduction in materials with memory, diffusion processes etc. In this paper, we have taken the fractional integro-differential equation of type Dy(t) = a(t)y(t) + f(t) + ∫ t
متن کاملA numerical method for solving delay-fractional differential and integro-differential equations
This article develops a direct method for solving numerically multi delay-fractional differential and integro-differential equations. A Galerkin method based on Legendre polynomials is implemented for solving linear and nonlinear of equations. The main characteristic behind this approach is that it reduces such problems to those of solving a system of algebraic equations. A conver...
متن کاملMulti-step conformable fractional differential transform method for solving and stability of the conformable fractional differential systems
In this article, the multi-step conformable fractional differential transform method (MSCDTM) is applied to give approximate solutions of the conformable fractional-order differential systems. Moreover, we check the stability of conformable fractional-order L\"{u} system with the MSCDTM to demonstrate the efficiency and effectiveness of the proposed procedure.
متن کاملa meshless method for numerical solution of fractional differential equations
in this paper, a technique generally known as meshless numerical scheme for solving fractional dierential equations isconsidered. we approximate the exact solution by use of radial basis function(rbf) collocation method. this techniqueplays an important role to reduce a fractional dierential equation to a system of equations. the numerical results demonstrate the accuracy and ability of this me...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Thermal Science
سال: 2018
ISSN: 0354-9836,2334-7163
DOI: 10.2298/tsci170624266b